![[State of RL/Reasoning] IMO/IOI Gold, OpenAI o3/GPT-5, and Cursor Composer — Ashvin Nair, Cursor](https://assets.flightcast.com/V2Uploads/nvaja2542wefzb8rjg5f519m/01K4D8FB4MNA071BM5ZDSMH34N/square.jpg)
From Berkeley robotics and OpenAI's 2017 Dota-era internship to shipping RL breakthroughs on GPT-4o, o1, and o3, and now leading model development at Cursor, Ashvin Nair has done it all.
We caught up with Ashvin at NeurIPS 2025 to dig into the inside story of OpenAI's reasoning team (spoiler: it went from a dozen people to 300+), why IOI Gold felt reachable in 2022 but somehow didn't change the world when o1 actually achieved it, how RL doesn't generalize beyond the training distribution (and why that means you need to bring economically useful tasks into distribution by co-designing products and models), the deeper lessons from the RL research era (2017–2022) and why most of it didn't pan out because the community overfitted to benchmarks, how Cursor is uniquely positioned to do continual learning at scale with policy updates every two hours and product-model co-design that keeps engineers in the loop instead of context-switching into ADHD hell, and his bet that the next paradigm shift is continual learning with infinite memory—where models experience something once (a bug, a mistake, a user pattern) and never forget it, storing millions of deployment tokens in weights without overloading capacity.
好的,这是为您生成的播客内容摘要:
本次采访在NeurIPS 2024现场进行,嘉宾是前OpenAI O1/O3团队成员、现Cursor机器学习负责人Ashwin。他分享了自己从机器人学博士到投身大语言模型研究的独特路径,深入探讨了OpenAI内部如何孕育出O系列推理模型,并展望了AI智能体与机器人技术的未来。
行动号召:Ashwin代表Cursor发出邀请,欢迎对代码数据、奖励模型以及产品-模型共同设计感兴趣的人才加入。
From Berkeley robotics and OpenAI's 2017 Dota-era internship to shipping RL breakthroughs on GPT-4o, o1, and o3, and now leading model development at Cursor, Ashvin Nair has done it all.
We caught up with Ashvin at NeurIPS 2025 to dig into the inside story of OpenAI's reasoning team (spoiler: it went from a dozen people to 300+), why IOI Gold felt reachable in 2022 but somehow didn't change the world when o1 actually achieved it, how RL doesn't generalize beyond the training distribution (and why that means you need to bring economically useful tasks into distribution by co-designing products and models), the deeper lessons from the RL research era (2017–2022) and why most of it didn't pan out because the community overfitted to benchmarks, how Cursor is uniquely positioned to do continual learning at scale with policy updates every two hours and product-model co-design that keeps engineers in the loop instead of context-switching into ADHD hell, and his bet that the next paradigm shift is continual learning with infinite memory—where models experience something once (a bug, a mistake, a user pattern) and never forget it, storing millions of deployment tokens in weights without overloading capacity.